Dirac equations: Difference between revisions
Marco Frasca (talk | contribs) |
Marco Frasca (talk | contribs) |
||
Line 30: | Line 30: | ||
This equation essentially reads | This equation essentially reads | ||
<center><math>D \psi = \phi \psi - \psi </math></center> | <center><math>\, D \psi = \phi \psi - \psi\!</math></center> | ||
<center><math>\Box \phi = \overline{\psi} \psi </math></center> | <center><math>\Box \phi = \overline{\psi} \psi </math></center> | ||
Line 40: | Line 40: | ||
* When <math>n=1</math> there is GWP for <math>(s_1,s_2) = (1,1)</math> [[Chd1973]], [[Bou2000]] and LWP for <math>(s_1, s_2) = (0, 1/2)</math> [[Bou2000]]. | * When <math>n=1</math> there is GWP for <math>(s_1,s_2) = (1,1)</math> [[Chd1973]], [[Bou2000]] and LWP for <math>(s_1, s_2) = (0, 1/2)</math> [[Bou2000]]. | ||
* When <math>n=2</math> there are some LWP results in [[Bou2001]] | * When <math>n=2</math> there are some LWP results in [[Bou2001]] | ||
==Nonlinear Dirac equation== | ==Nonlinear Dirac equation== | ||
Revision as of 07:12, 19 June 2009
This article describes several equations named after Paul Dirac.
The Maxwell-Dirac equation
[More info on this equation would be greatly appreciated. - Ed.]
This equation essentially reads
where is a spinor field (solving a coupled massive Dirac equation), and is the Dirac operator with connection A. We put in and in .
- Scaling is .
- When , there is GWP for small smooth data Chd1973
- When there is LWP for in the Coulomb gauge Bou1999, and for in the Lorenz gauge Bou1996
- For in the Coulomb gauge this is in Bou1996
- This has recently been improved by Selberg to . Note that for technical reasons, lower-regularity results do not automatically imply higher ones when the regularity of one field (e.g. ) is kept fixed.
- LWP for smooth data was obtained in Grs1966
- GWP for small smooth data was obtained in Ge1991
- When , GWP for small smooth data is known (Psarelli?)
In the nonrelativistic limit this equation converges to a Maxwell-Poisson system for data in the energy space BecMauSb-p2; furthermore one has a local well-posedness result which grows logarithmically in the asymptotic parameter. Earlier work appears in MasNa2003.
Dirac-Klein-Gordon equation
[More info on this equation would be greatly appreciated. - Ed.]
This equation essentially reads
where is a spinor field (solving a coupled massive Dirac equation), is the Dirac operator and is a scalar (real) field. We put in and in .
The energy class is essentially , but the energy density is not positive. However, the norm of is also positive and conserved..
- Scaling is .
- When there is GWP for Chd1973, Bou2000 and LWP for Bou2000.
- When there are some LWP results in Bou2001
Nonlinear Dirac equation
This equation essentially reads
where is a spinor field, is the mass, is a complex parameter, is the zeroth Pauli matrix, and is the spinor inner product.
- Scaling is (at least in the massless case ).
- In , LWP is known for when EscVe1997
- This can be improved to LWP in (and GWP for small data) if an epsilon of additional regularity as assumed in the radial variable MacNkrNaOz-p; in particular one has GWP for radial data.
- In , GWP is known for small data when MacNaOz-p2. Some results on the nonrelativistic limit of this equation are also obtained in that paper.