Quartic NLS

From DispersiveWiki
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Quartic NLS on

  • Scaling is .
  • For any quartic non-linearity one can obtain LWP for CaWe1990
    • Below we have ill-posedness by Gallilean invariance considerations in both the focusing KnPoVe-p and defocusing CtCoTa-p2 cases.
  • If the quartic non-linearity is of type then one can obtain LWP for For one has LWP for , while for the other three types , , or one has LWP for Gr-p2.
  • In the Hamiltonian case (a non-linearity of type ) we have GWP for by conservation. In the other cases it is not clear whether there is any reasonable GWP result, except possibly for very small data.

Quartic NLS on

  • For any quartic non-linearity one has LWP for Bo1993.
  • If the quartic non-linearity is of type then one can obtain LWP for , Gr-p2.
  • If the nonlinearity is of type one has GWP for random data whose Fourier coefficients decay like (times a Gaussian random variable) Bo1995c. Indeed one has an invariant measure.

Quartic NLS on

  • Scaling is
  • For any quartic non-linearity one can obtain LWP for CaWe1990.
    • For we have ill-posedness, indeed the norm can get arbitrarily large arbitrarily quickly CtCoTa-p2. In the focusing case we have instantaneous blowup from the virial identity and scaling.
  • In the Hamiltonian case (a non-linearity of type ) we have GWP for Ka1986.
    • This has been improved to in CoKeStTkTa2003c in the defocusing Hamiltonian case. This result can of course be improved further.
    • Scattering in the energy space Na1999c in the defocusing Hamiltonian case.
    • One also has GWP and scattering for small data for any quintic non-linearity.